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Proof of regularity lemma

We now prove the regularity lemma. Idea is to define a function q measuring quality of a partitioning. Value
of the function will be in [0, 1] and if there are enough pairs, that are not ε-regular, then the partition could
be refined and q will grow by a constant depending only on ε. Hence after finitely many steps, we obtain an
ε-regular partition.

Let G be an n-vertex graph with vertex partition P = {V1, · · · , Vk}, the mean square density of a pair of
partition classes Vi, Vj is

q(Vi, Vj) =
|Vi||Vj |
n2

d(Vi, Vj)
2 =

e(Vi, Vj)

|Vi||Vj |n2
,

where e(Vi, Vj) is the number of edges between Vi and Vj . The mean square density of the partition is

q(P) =
∑
i<j

q(Vi, Vj) =
∑
i<j

|Vi||Vj |
n2

d(Vi, Vj)
2.

Observe that the mean square density of a partition is always between 0 and 1.

1: Show that 0 ≤ q(P) ≤ 1.

Solution:

q(P) =
∑
i<j

q(Vi, Vj) =
∑
i<j

|Vi||Vj|
n2

d(Vi, Vj)
2 ≤ 1

n2

∑
i<j

|Vi||Vj| ≤
1

n2
· 1

2

(∑
i

|Vi|

)2

< 1

Given a partition P, a refinement of P is a partition P ′ of the same underlying set such that each class of P ′
is contained in a class of P. In this way, if X is a partition class of P we can also use the term refinement of
X to refer to the classes of P ′ whose disjoint union is X.

Lemma 1. If X,Y are disjoint vertex sets with refinements X = X1 ∪X2 and Y = Y1 ∪ Y2, then

q(X,Y ) ≤
∑

1≤i,j≤2
q(Xi, Yj).

Furthermore, the mean square density of partition P is at most the mean square density of a refinement of P.

Proof. Let X,Y be disjoint sets with refinements X = X1, X2 and Y = Y1, Y2.

2: Use Cauchy-Schwarz inequality, i.e. (
∑

i aibi)
2 ≤ (

∑
i a

2
i )(
∑

i b
2
i ) to show (

∑
i cidi)

2 ≤ (
∑

i ci)(
∑

i cid
2
i )

Solution: Use ai =
√
ci and bi =

√
ci · di.

3: Apply this to the following with di = d(Xi, Yj)

d(X,Y )2 =

 ∑
1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)

2

≤

∑
i,j

|Xi||Yj |
|X||Y |

∑
i,j

|Xi||Yj |
|X||Y |

d(Xi, Yj)
2

 .

4: Show q(X,Y ) ≤
∑

i,j q(Xi, Yj).

Solution:

q(X, Y ) =
|X||Y |
n2

d(X, Y )2 ≤
∑
i,j

|Xi||Yj|
n2

d(Xi, Yj)
2 =

∑
i,j

q(Xi, Yj).
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5: Finish the proof by showing q(P) ≤ q(P ′) if P ′ is a refinement of P.

Solution: We also get

q(X, Y ) ≤
∑
i,j

q(Xi, Yj) ≤ q(X1, X2) + q(Y1, Y2) +
∑
i,j

q(Xi, Yj).

Thus if P ′ is a refinement of P we have q(P ) ≤ q(P ′).

Lemma 2. Suppose X and Y are partition classes of G such that X,Y is not ε-regular, then there is a refinement
X = X1 ∪X2 and Y = Y1 ∪ Y2 such that

q(X,Y ) +
|X||Y |
n2

ε4 ≤
∑

1≤i,j≤2
q(Xi, Yj).

Proof. Because X,Y is not ε-regular, there are sets X1 ⊂ X and Y1 ⊂ Y such that |X1| ≥ ε|X| and |Y1| ≥ ε|Y |
such that

|d(X,Y )− d(X1, Y1)| ≥ ε.

Thus,
ε2 ≤ (d(X,Y )− d(X1, Y1))

2

and

ε2 ≤ |X1||Y1|
|X||Y |

.

Put X2 = X −X1 and Y2 = Y − Y1.

6: Show that ∑
1≤i,j≤2

|Xi||Yj |
|X||Y |

= 1 and d(X,Y ) =
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)

Solution: Count pairs (x, y), where x ∈ X and y ∈ Y in two different ways - the
second one is counting them partitioned.

d(X, Y ) =
e(X, Y )

|X||Y |
=

∑
1≤i,j≤2

e(Xi, Yj)

|X||Y |
=

∑
1≤i,j≤2

|Xi||Yj|
|X||Y |

d(Xi, Yj)

7: Show

ε4 ≤ −d(X,Y )2 +
∑

1≤i,j≤2

|Xi||Yj |
|X||Y |

d(Xi, Yj)
2

Hint start with ε4 ≤ ε2 · ε2 ≤ · · · and when you have term for indices 1, just add all other for 1 ≤ i, j ≤ 2.

Solution: Now

ε4 ≤ |X1||Y1|
|X||Y |

(d(X, Y )− d(X1, Y1))
2 ≤

∑
1≤i,j≤2

|Xi||Yj|
|X||Y |

(d(X, Y )− d(Xi, Yj))
2

= d(X, Y )2
∑

1≤i,j≤2

|Xi||Yj|
|X||Y |

− 2d(X, Y )
∑

1≤i,j≤2

|Xi||Yj|
|X||Y |

d(Xi, Yj) +
∑

1≤i,j≤2

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2.
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The first sum in the previous line is at most 1 and the second sum is d(X, Y ), so we
get

ε4 ≤ −d(X, Y )2 +
∑

1≤i,j≤2

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2

8: Finish the proof.

Solution: Multiplying both sides by |X||Y |/n2 gives the result.

Lemma 3. Suppose G is an n-vertex graph with partition A that includes a class V of at least two elements.
If B is a refinement that comes from refining V into a single element X and Y = V −X, then

q(A) ≥ q(B)− 2

n
.

Proof. Let V be the class of P that is refined into a single element X and Y = V −X. Let Vi 6= V be a partition
class of P, Observe that

q(P ′)− q(P) =
∑
Vi 6=V

q(X,Vi) + q(Y, Vi)− q(V, Vi).

9: Use the definition of q(A,B) to estimate that each q(X,Vi) and q(Y, Vi)− q(V, Vi) is upper bounded by |Vi|
n2 .

Then finish the proof.

Solution: For each Vi we have

q(X, Vi) ≤
|Vi|
n2

and

q(Y, Vi)− q(V, Vi) =
1

n2

e(Y, Vi)
2

|Y ||Vi|
− 1

n2

e(V, Vi)
2

|V ||Vi|
≤ 1

n2

e(Y, Vi)
2(|V | − |Y |)

|Y ||V ||Vi|

≤ 1

n2

e(Y, Vi)
2

|Y ||V ||Vi|
≤ 1

n2

(|Y ||Vi|)2

|Y ||V ||Vi|
≤ |Vi|

n2

Summing both of the above equations for all Vi 6= V gives the lemma,

Lemma 4. If P is an equipartition into k ≥ 4ε−6 parts such that more than εk2 pairs of classes are not
ε-regular, then there is an equipartition R of at most k22k−1 parts such that,

q(R) ≥ q(P) + ε5/2.

Proof. Proof outline. First we split pairs on P that are not ε-regular. This gives P ′ and Lemma 2 gives a boost
in q. Then we create a further refinement P ′′, which has parts of equal sizes and some leftover. Finally, we
move the leftover back in to classes of P ′′, resulting in R. In this step, q may decrease but Lemma 3 will help
us control the decrease.
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For a pair of classes X,Y of the partition that are not ε-regular, there is a refinement given by Lemma 2 that
increases the mean square density. Let P ′ be the resulting refinement of P when we split every pair that is not
ε-regular.

10: What is the upper bound on the number of classes in P ′?
Hint: One class on P will be split into at most how many classes of P ′?

Solution: Let us apply these refinements to every class of P . Each class is in at
most k − 1 pairs that are not ε-regular, so each class is refined at most k − 1 times.
Therefore, each class of P is split into at most 2k−1 new parts. Let P ′ be the resulting
refinement of P and note that P ′ has k′ = k2k−1 total classes.

11: Show that
q(P ′) > q(P) + ε5.

Hint: What is increase for one pair that is not ε-regular? How many increases we get? Use Lemma 2.

Solution: For any pair of classes X, Y of P that are not ε-regular there is a refinement
X = X1 ∪X2 and Y = Y1 ∪ Y2 such that∑

1≤i,j≤2

q(Xi, Yj) ≥ q(X, Y ) +
|X||Y |
n2

ε4 ≥ q(X, Y ) +
1

k2
ε4. (1)

The sets X1, X2, Y1, Y2 are further refined in the construction of P ′. If V ′1 , . . . , V
′
k′ are

the classes of P ′, then

∑
V ′
i⊂X,V ′

j⊂Y

q(V ′i , V
′
j ) ≥ q(X, Y ) +

1

k2
ε4.

Furthermore, for all other refinements to P the mean square density cannot decrease.
Therefore, as there are more than εk2 such pairs X, Y , we have

q(P ′) > q(P) + ε5.

Now it remains to convert P ′ into an equipartition. Split each of classes of P ′ into subclasses of size exactly
n/(k22k−1) and a “leftover” class of size < n/(k22k−1). Furthermore, for simplicity, let us split all of the
“leftover” vertices into classes of a single vertex. Let the resulting partition be P ′′. Observe that at this point
there are at most k22k−1 classes that are not singletons.

Now we distribute these “leftover” vertices as evenly as possible into the classes of size exactly n/(k22k−1) to
get an equipartition R. However, because P ′′ is a refinement of R we have that q(R) ≤ q(P ′′). Fortunately,
the decrease is small.

12: Calculate an upper bound on the number of “leftover” vertices.

Solution: The total number of “leftover” vertices is less than

k2k−1 n

k22k−1
=
n

k
.
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We can arrive at P ′′ from R by creating a new singleton class for each “leftover” vertex.

13: Use Lemma 3 to find an lower bound on q(R)− q(P ′′). Make the bound ONLY in ε to some power.

Solution: Repeatedly applying Lemma 3 gives

q(R)− q(P ′′) ≥ n

k

2

n
=

2

k
= ε6/2.

14: Show that q(R) ≥ q(P) + ε5/2. Hint: Use q(P ′′).

Solution:

q(R) ≥ q(P ′′)− ε6/2 ≥ q(P ′)− ε6/2 ≥ q(P) + ε5 − ε6/2 ≥ q(P) + ε5/2.

The partition R simply moved singleton partition classes to those that were not singletons. So the total number
of classes is at most

k22k−1,

which completes the result.

Theorem 5 (Szemerédi regularity lemma, 1974). Given ε > 0 and m ≥ 1, there exists a constant M = M(ε,m)
such that every graph on at least m vertices has an equipartition into r parts such that all but at most εr2 pairs
of classes are ε-regular and m ≤ r < M .

Proof. 15: Finish the proof and give a upper bound on M not depending on n. Hint: Make sure you can
apply Lemma 4 and keep applying it. How many application you need and how will this influence the number
of parts?

Solution: Begin with an equipartition of G into k ≥ max{m, 4ε−6} classes. If it is
ε-regular we are done. Otherwise, the lemma above allows us to refine the partition
into k22k−1 classes and increase the mean square density by at least ε5/2. We continue
this process until we reach an ε-regular partition. Because the mean square density
cannot exceed 1, this process must stop after at most 2ε−5 steps. That is, we have
an equipartition into r classes where all but at most εr2 pairs of classes are ε-regular.
Furthermore, for each application of the lemma the number of classes increases from
k to at most k22k−1 ≤ 22k = 4k parts, so when the process stops we have m < r < M

where M is at most a tower of 4s of height at most 2ε−5.
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