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Proof of regularity lemma

We now prove the regularity lemma. Idea is to define a function ¢ measuring quality of a partitioning. Value
of the function will be in [0, 1] and if there are enough pairs, that are not e-regular, then the partition could
be refined and ¢ will grow by a constant depending only on €. Hence after finitely many steps, we obtain an
e-regular partition.

Let G be an n-vertex graph with vertex partition P = {V1,---,V}}, the mean square density of a pair of
partition classes V;, V; is
Vil [Vj] e(Vi, Vj)
Vi, V; d(\Vi, V; —_—
( (2 ) n2 ( (2 ) ’VHV’TL27

where e(V;, Vj) is the number of edges between V; and V;. The mean square density of the partition is

aP) =Y avivy) = 3 a2

1<J 1<j

Observe that the mean square density of a partition is always between 0 and 1.

1: Show that 0 < ¢(P) < 1.

Solution:
\vuvw 2
= qVi, V) = > (Vi V) ZWHVK Z\w <1
1<j 1< 1<J 7

Given a partition P, a refinement of P is a partition P’ of the same underlying set such that each class of P’
is contained in a class of P. In this way, if X is a partition class of P we can also use the term refinement of
X to refer to the classes of P’ whose disjoint union is X.

Lemma 1. If X, Y are disjoint vertex sets with refinements X = X1 U Xo and Y =Y UY>, then

g(X,Y)< Y (X, Y)).

1<i,j<2

Furthermore, the mean square density of partition P is at most the mean square density of a refinement of P.

Proof. Let X,Y be disjoint sets with refinements X = Xy, X5 and Y = Y7, Y5.

2: Use Cauchy-Schwarz inequality, i.e. (D, aiby)? < (>, ad) (32, b?) to show (3, cidi)? < > e) (X cid?)
Solution: Use a; = /¢; and b; = /¢; - d;.

3: Apply this to the following with d; = d(X;,Y))

Xy X% ) < (5 Xl XV
R WV (a2l Bt DO e N O e
4: Show q(X,Y)§Z< q(Xi,Yj).
Solution:
XY | XG5 HY! :
q(X,Y) = —5— d(X,Y)? <Z g d(X;,Y;)P =) a(X,Y)).
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5: Finish the proof by showing ¢(P) < q(P’) if P’ is a refinement of P.

Solution: We also get

¢(X,Y) < Zq $Y5) < (X1, Xo) + (Y1, Y2) + ) a(X,Y5).
7J
Thus if P’ is a refinement of P we have q(P) < q(P').
O

Lemma 2. Suppose X andY are partition classes of G such that X, Y is not e-reqular, then there is a refinement
X=X1UX5 and Y =Y UY5 such that

g+ X< S ),
1<4,5<2

Proof. Because X,Y is not e-regular, there are sets X1 C X and Y7 C Y such that | X;| > ¢|X| and |Y1| > €|Y]
such that
|[d(X,Y) —d(X1,Y1)| > e.

Thus,
e < (d(X,Y) —d(X1,Y1))?
and 11y
& < | X ][4
| XY
PuthzX—Xl andezY—Yl.
6: Show that XV XY
Il 1 and  d(X,Y) = HILA(X,,Y;)
2 XY X[y

1<4,5<2 1<4,5<2

Solution: Count pairs (x,y), where z € X and y € Y in two different ways - the
second one is counting them partitioned.

e(X,Y) e(Xi, Y5) XY
d(X,)Y) = "L = A1) L d(X,Y)
| XY g@ [ XY &Z;SQ [ XY "

7: Show
|1 Xil[Y5]

d<—dX Y+ Y XY

‘ d(X27 Y7)
1<i,j<2

Hint start with €* < €2 .€2 < -.. and when you have term for indices 1, just add all other for 1 <14,j5 < 2.

Solution: Now

\X1HY1\ 2 ‘XIHYH 2
6 = <d<X7Y) - d(Xth» < <d<X7 Y) - d<X7aY>>
IXH | 122 | XY !
Rang | X[V | XY 2
=d(X. V)" > D—2d(X,Y) > Ld(X;, V) + ) Ld(X;, ;)2
A XN s XY s XY
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The first sum in the previous line is at most 1 and the second sum is d(X,Y), so we
get
XY

d(X;,Y;)?
[ XY !

et < —d(X,Y) + Z

1<i,j<2
8: Finish the proof.

Solution: Multiplying both sides by | X||Y|/n? gives the result.
t

Lemma 3. Suppose G is an n-vertex graph with partition A that includes a class V' of at least two elements.
If B is a refinement that comes from refining V' into a single element X and Y =V — X, then

Proof. Let V be the class of P that is refined into a single element X and Y =V — X. Let V; # V be a partition
class of P, Observe that
q(P") —q(P) = Y q(X, Vi) +q(Y, Vi) — q(V, V).
Vi#gV
9: Use the definition of ¢(A, B) to estimate that each ¢(X,V;) and ¢(Y,V;) — q(V, V) is upper bounded by g—;'
Then finish the proof.

Solution: For each V; we have

and

idKWV_idWWV<idKWVWW—WD
n? [Y]|Vi[  n? [V]|Vi] T n? YI{[VI[Vi|

1L e(Y,V)? 1 ([Y|Vi])? _ |V

G SRS g <

- n?|Y[|VI[Vi| T n?[Y[V]IV}] T n?

q(Y, Vi) —q(V,V;) =

Summing both of the above equations for all V; # V' gives the lemma,
O

Lemma 4. If P is an equipartition into k > 45 parts such that more than ek® pairs of classes are not
e-reqular, then there is an equipartition R of at most k25~ parts such that,

a(R) > q(P) + € /2.

Proof. Proof outline. First we split pairs on P that are not e-regular. This gives P’ and Lemma [2] gives a boost
in ¢g. Then we create a further refinement P”, which has parts of equal sizes and some leftover. Finally, we
move the leftover back in to classes of P”, resulting in R. In this step, ¢ may decrease but Lemma [3[ will help
us control the decrease.
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For a pair of classes X,Y of the partition that are not e-regular, there is a refinement given by Lemma [2] that
increases the mean square density. Let P’ be the resulting refinement of P when we split every pair that is not
e-regular.

10: What is the upper bound on the number of classes in P’?
Hint: One class on P will be split into at most how many classes of P’?

Solution: Let us apply these refinements to every class of P. Each class is in at
most £ — 1 pairs that are not e-regular, so each class is refined at most & — 1 times.
Therefore, each class of P is split into at most 2¥~! new parts. Let P’ be the resulting
refinement of P and note that P’ has &' = k2F~! total classes.

11: Show that
q(P") > q(P) + €.

Hint: What is increase for one pair that is not e-regular? How many increases we get? Use Lemma

Solution: For any pair of classes X, Y of P that are not e-regular there is a refinement
X =XjUXsand Y =Y, UY5 such that

XY

. q(X,Y) + ! * (1)

> (X Y)) 2 q(X.Y) + e

1<i,j<2

The sets X1, Xo,Y7, Yy are further refined in the construction of P'. If V{,... V], are
the classes of P’, then

VicX,\V/cY

Furthermore, for all other refinements to P the mean square density cannot decrease.
Therefore, as there are more than ek? such pairs X,Y, we have

q(P) > q(P) + €.

Now it remains to convert P’ into an equipartition. Split each of classes of P’ into subclasses of size exactly
n/(k*2F=1) and a “leftover” class of size < n/(k?2¥~1). Furthermore, for simplicity, let us split all of the
“leftover” vertices into classes of a single vertex. Let the resulting partition be P”. Observe that at this point
there are at most k22¥~1 classes that are not singletons.

Now we distribute these “leftover” vertices as evenly as possible into the classes of size exactly n/(k*2*~1) to
get an equipartition R. However, because P” is a refinement of R we have that ¢(R) < ¢(P”). Fortunately,
the decrease is small.

12: Calculate an upper bound on the number of “leftover” vertices.

Solution: The total number of “leftover” vertices is less than
n n
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We can arrive at P” from R by creating a new singleton class for each “leftover” vertex.

13: Use Lemma 3] to find an lower bound on ¢(R) — ¢(P”). Make the bound ONLY in € to some power.
Solution: Repeatedly applying Lemma (3| gives

G(R) (P> 02 =2

6
—=—=¢"/2.
~—kn k e/

14: Show that ¢(R) > ¢(P) + €>/2. Hint: Use ¢(P").

Solution:
a(R) > q(P") — /2> q(P') = /2> g(P) + & — &2 > ¢(P) + &/2

The partition R simply moved singleton partition classes to those that were not singletons. So the total number

of classes is at most

k22k—1
which completes the result. ]
Theorem 5 (Szemerédi regularity lemma, 1974). Given € > 0 and m > 1, there exists a constant M = M (e,m)

such that every graph on at least m vertices has an equipartition into r parts such that all but at most er® pairs
of classes are e-regular and m < r < M.

Proof. 15:  Finish the proof and give a upper bound on M not depending on n. Hint: Make sure you can
apply Lemma [4] and keep applying it. How many application you need and how will this influence the number
of parts?

Solution: Begin with an equipartition of G into k& > max{m,4e °} classes. If it is
e-regular we are done. Otherwise, the lemma above allows us to refine the partition
into k22! classes and increase the mean square density by at least €*/2. We continue
this process until we reach an e-regular partition. Because the mean square density
cannot exceed 1, this process must stop after at most 2¢° steps. That is, we have
an equipartition into r classes where all but at most er? pairs of classes are e-regular.
Furthermore, for each application of the lemma the number of classes increases from
k to at most k?2F~1 < 2% = 4% parts, so when the process stops we have m < r < M
where M is at most a tower of 4s of height at most 2¢°.

O
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