Proof of regularity lemma

We now prove the regularity lemma. Idea is to define a function q measuring quality of a partitioning. Value of the function will be in [0, 1] and if there are enough pairs, that are not ϵ -regular, then the partition could be refined and q will grow by a constant depending only on ϵ . Hence after finitely many steps, we obtain an ϵ -regular partition.

Let G be an n-vertex graph with vertex partition $\mathcal{P} = \{V_1, \dots, V_k\}$, the **mean square density** of a pair of partition classes V_i, V_j is

$$q(V_i, V_j) = \frac{|V_i||V_j|}{n^2} d(V_i, V_j)^2 = \frac{e(V_i, V_j)}{|V_i||V_j|n^2}$$

where $e(V_i, V_j)$ is the number of edges between V_i and V_j . The **mean square density** of the partition is

$$q(\mathcal{P}) = \sum_{i < j} q(V_i, V_j) = \sum_{i < j} \frac{|V_i| |V_j|}{n^2} d(V_i, V_j)^2.$$

Observe that the mean square density of a partition is always between 0 and 1.

1: Show that $0 \le q(\mathcal{P}) \le 1$.

Solution:

$$q(\mathcal{P}) = \sum_{i < j} q(V_i, V_j) = \sum_{i < j} \frac{|V_i| |V_j|}{n^2} d(V_i, V_j)^2 \le \frac{1}{n^2} \sum_{i < j} |V_i| |V_j| \le \frac{1}{n^2} \cdot \frac{1}{2} \left(\sum_i |V_i| \right)^2 < 1$$

Given a partition \mathcal{P} , a **refinement** of \mathcal{P} is a partition \mathcal{P}' of the same underlying set such that each class of \mathcal{P}' is contained in a class of \mathcal{P} . In this way, if X is a partition class of \mathcal{P} we can also use the term **refinement** of X to refer to the classes of \mathcal{P}' whose disjoint union is X.

Lemma 1. If X, Y are disjoint vertex sets with refinements $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$, then

$$q(X,Y) \le \sum_{1 \le i,j \le 2} q(X_i,Y_j).$$

Furthermore, the mean square density of partition \mathcal{P} is at most the mean square density of a refinement of \mathcal{P} .

Proof. Let X, Y be disjoint sets with refinements $X = X_1, X_2$ and $Y = Y_1, Y_2$.

2: Use Cauchy-Schwarz inequality, i.e. $(\sum_i a_i b_i)^2 \leq (\sum_i a_i^2)(\sum_i b_i^2)$ to show $(\sum_i c_i d_i)^2 \leq (\sum_i c_i)(\sum_i c_i d_i^2)$ Solution: Use $a_i = \sqrt{c_i}$ and $b_i = \sqrt{c_i} \cdot d_i$.

3: Apply this to the following with $d_i = d(X_i, Y_j)$

$$d(X,Y)^{2} = \left(\sum_{1 \le i,j \le 2} \frac{|X_{i}||Y_{j}|}{|X||Y|} d(X_{i},Y_{j})\right)^{2} \le \left(\sum_{i,j} \frac{|X_{i}||Y_{j}|}{|X||Y|}\right) \left(\sum_{i,j} \frac{|X_{i}||Y_{j}|}{|X||Y|} d(X_{i},Y_{j})^{2}\right)$$

4: Show $q(X, Y) \leq \sum_{i,j} q(X_i, Y_j)$.

Solution:

$$q(X,Y) = \frac{|X||Y|}{n^2} d(X,Y)^2 \le \sum_{i,j} \frac{|X_i||Y_j|}{n^2} d(X_i,Y_j)^2 = \sum_{i,j} q(X_i,Y_j)$$

5: Finish the proof by showing $q(\mathcal{P}) \leq q(\mathcal{P}')$ if \mathcal{P}' is a refinement of \mathcal{P} .

Solution: We also get

$$q(X,Y) \le \sum_{i,j} q(X_i,Y_j) \le q(X_1,X_2) + q(Y_1,Y_2) + \sum_{i,j} q(X_i,Y_j).$$

Thus if \mathcal{P}' is a refinement of \mathcal{P} we have $q(P) \leq q(P')$.

Lemma 2. Suppose X and Y are partition classes of G such that X, Y is not ϵ -regular, then there is a refinement $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that

$$q(X,Y) + \frac{|X||Y|}{n^2} \epsilon^4 \le \sum_{1 \le i,j \le 2} q(X_i,Y_j).$$

Proof. Because X, Y is not ϵ -regular, there are sets $X_1 \subset X$ and $Y_1 \subset Y$ such that $|X_1| \ge \epsilon |X|$ and $|Y_1| \ge \epsilon |Y|$ such that

$$|d(X,Y) - d(X_1,Y_1)| \ge \epsilon$$

Thus,

$$\epsilon^2 \le (d(X,Y) - d(X_1,Y_1))^2$$

and

$$\epsilon^2 \le \frac{|X_1||Y_1|}{|X||Y|}.$$

Put $X_2 = X - X_1$ and $Y_2 = Y - Y_1$.

6: Show that

$$\sum_{1 \le i,j \le 2} \frac{|X_i||Y_j|}{|X||Y|} = 1 \quad \text{and} \quad d(X,Y) = \sum_{1 \le i,j \le 2} \frac{|X_i||Y_j|}{|X||Y|} d(X_i,Y_j)$$

Solution: Count pairs (x, y), where $x \in X$ and $y \in Y$ in two different ways - the second one is counting them partitioned.

$$d(X,Y) = \frac{e(X,Y)}{|X||Y|} = \sum_{1 \le i,j \le 2} \frac{e(X_i,Y_j)}{|X||Y|} = \sum_{1 \le i,j \le 2} \frac{|X_i||Y_j|}{|X||Y|} d(X_i,Y_j)$$

7: Show

$$\epsilon^4 \le -d(X,Y)^2 + \sum_{1 \le i,j \le 2} \frac{|X_i||Y_j|}{|X||Y|} d(X_i,Y_j)^2$$

Hint start with $\epsilon^4 \leq \epsilon^2 \cdot \epsilon^2 \leq \cdots$ and when you have term for indices 1, just add all other for $1 \leq i, j \leq 2$. Solution: Now

$$\epsilon^{4} \leq \frac{|X_{1}||Y_{1}|}{|X||Y|} (d(X,Y) - d(X_{1},Y_{1}))^{2} \leq \sum_{1 \leq i,j \leq 2} \frac{|X_{i}||Y_{j}|}{|X||Y|} (d(X,Y) - d(X_{i},Y_{j}))^{2}$$
$$= d(X,Y)^{2} \sum_{1 \leq i,j \leq 2} \frac{|X_{i}||Y_{j}|}{|X||Y|} - 2d(X,Y) \sum_{1 \leq i,j \leq 2} \frac{|X_{i}||Y_{j}|}{|X||Y|} d(X_{i},Y_{j}) + \sum_{1 \leq i,j \leq 2} \frac{|X_{i}||Y_{j}|}{|X||Y|} d(X_{i},Y_{j})^{2}.$$

The first sum in the previous line is at most 1 and the second sum is d(X, Y), so we get

$$\epsilon^4 \le -d(X,Y)^2 + \sum_{1\le i,j\le 2} \frac{|X_i||Y_j|}{|X||Y|} d(X_i,Y_j)^2$$

8: Finish the proof.

Solution: Multiplying both sides by $|X||Y|/n^2$ gives the result.

Lemma 3. Suppose G is an n-vertex graph with partition \mathcal{A} that includes a class V of at least two elements. If \mathcal{B} is a refinement that comes from refining V into a single element X and Y = V - X, then

$$q(\mathcal{A}) \ge q(\mathcal{B}) - \frac{2}{n}.$$

Proof. Let V be the class of \mathcal{P} that is refined into a single element X and Y = V - X. Let $V_i \neq V$ be a partition class of \mathcal{P} , Observe that

$$q(\mathcal{P}') - q(\mathcal{P}) = \sum_{V_i \neq V} q(X, V_i) + q(Y, V_i) - q(V, V_i).$$

9: Use the definition of q(A, B) to estimate that each $q(X, V_i)$ and $q(Y, V_i) - q(V, V_i)$ is upper bounded by $\frac{|V_i|}{n^2}$. Then finish the proof.

Solution: For each V_i we have

$$q(X, V_i) \le \frac{|V_i|}{n^2}$$

and

$$q(Y,V_i) - q(V,V_i) = \frac{1}{n^2} \frac{e(Y,V_i)^2}{|Y||V_i|} - \frac{1}{n^2} \frac{e(V,V_i)^2}{|V||V_i|} \le \frac{1}{n^2} \frac{e(Y,V_i)^2(|V| - |Y|)}{|Y||V||V_i|} \le \frac{1}{n^2} \frac{e(Y,V_i)^2}{|Y||V||V_i|} \le \frac{1}{n^2} \frac{(|Y||V_i|)^2}{|Y||V||V_i|} \le \frac{|V_i|}{n^2}$$

Summing both of the above equations for all $V_i \neq V$ gives the lemma,

Lemma 4. If \mathcal{P} is an equipartition into $k \geq 4\epsilon^{-6}$ parts such that more than ϵk^2 pairs of classes are not ϵ -regular, then there is an equipartition \mathcal{R} of at most $k^2 2^{k-1}$ parts such that,

$$q(\mathcal{R}) \ge q(\mathcal{P}) + \epsilon^5/2.$$

Proof. Proof outline. First we split pairs on \mathcal{P} that are not ϵ -regular. This gives \mathcal{P}' and Lemma 2 gives a boost in q. Then we create a further refinement \mathcal{P}'' , which has parts of equal sizes and some leftover. Finally, we move the leftover back in to classes of \mathcal{P}'' , resulting in \mathcal{R} . In this step, q may decrease but Lemma 3 will help us control the decrease.

For a pair of classes X, Y of the partition that are not ϵ -regular, there is a refinement given by Lemma 2 that increases the mean square density. Let \mathcal{P}' be the resulting refinement of \mathcal{P} when we split every pair that is not ϵ -regular.

10: What is the upper bound on the number of classes in \mathcal{P}' ? Hint: One class on \mathcal{P} will be split into at most how many classes of \mathcal{P}' ?

Solution: Let us apply these refinements to every class of \mathcal{P} . Each class is in at most k-1 pairs that are not ϵ -regular, so each class is refined at most k-1 times. Therefore, each class of \mathcal{P} is split into at most 2^{k-1} new parts. Let \mathcal{P}' be the resulting refinement of \mathcal{P} and note that \mathcal{P}' has $k' = k2^{k-1}$ total classes.

11: Show that

$$q(\mathcal{P}') > q(\mathcal{P}) + \epsilon^5.$$

Hint: What is increase for one pair that is not ϵ -regular? How many increases we get? Use Lemma 2.

Solution: For any pair of classes X, Y of \mathcal{P} that are not ϵ -regular there is a refinement $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that

$$\sum_{1 \le i,j \le 2} q(X_i, Y_j) \ge q(X, Y) + \frac{|X||Y|}{n^2} \epsilon^4 \ge q(X, Y) + \frac{1}{k^2} \epsilon^4.$$
(1)

The sets X_1, X_2, Y_1, Y_2 are further refined in the construction of \mathcal{P}' . If $V'_1, \ldots, V'_{k'}$ are the classes of \mathcal{P}' , then

$$\sum_{V_i' \subset X, V_j' \subset Y} q(V_i', V_j') \ge q(X, Y) + \frac{1}{k^2} \epsilon^4.$$

Furthermore, for all other refinements to \mathcal{P} the mean square density cannot decrease. Therefore, as there are more than ϵk^2 such pairs X, Y, we have

$$q(\mathcal{P}') > q(\mathcal{P}) + \epsilon^5.$$

Now it remains to convert \mathcal{P}' into an equipartition. Split each of classes of \mathcal{P}' into subclasses of size exactly $n/(k^22^{k-1})$ and a "leftover" class of size $< n/(k^22^{k-1})$. Furthermore, for simplicity, let us split all of the "leftover" vertices into classes of a single vertex. Let the resulting partition be \mathcal{P}'' . Observe that at this point there are at most k^22^{k-1} classes that are not singletons.

Now we distribute these "leftover" vertices as evenly as possible into the classes of size exactly $n/(k^22^{k-1})$ to get an equipartition \mathcal{R} . However, because \mathcal{P}'' is a refinement of \mathcal{R} we have that $q(\mathcal{R}) \leq q(\mathcal{P}'')$. Fortunately, the decrease is small.

12: Calculate an upper bound on the number of "leftover" vertices.

Solution: The total number of "leftover" vertices is less than

$$k2^{k-1}\frac{n}{k^22^{k-1}} = \frac{n}{k}.$$

We can arrive at \mathcal{P}'' from \mathcal{R} by creating a new singleton class for each "leftover" vertex.

13: Use Lemma 3 to find an lower bound on $q(\mathcal{R}) - q(\mathcal{P}'')$. Make the bound ONLY in ϵ to some power.

Solution: Repeatedly applying Lemma 3 gives

$$q(\mathcal{R}) - q(\mathcal{P}'') \ge \frac{n}{k} \frac{2}{n} = \frac{2}{k} = \epsilon^6/2.$$

14: Show that $q(\mathcal{R}) \ge q(\mathcal{P}) + \epsilon^5/2$. Hint: Use $q(\mathcal{P}'')$.

Solution:

$$q(\mathcal{R}) \ge q(\mathcal{P}'') - \epsilon^6/2 \ge q(\mathcal{P}') - \epsilon^6/2 \ge q(\mathcal{P}) + \epsilon^5 - \epsilon^6/2 \ge q(\mathcal{P}) + \epsilon^5/2$$

The partition \mathcal{R} simply moved singleton partition classes to those that were not singletons. So the total number of classes is at most

 $k^2 2^{k-1}$,

which completes the result.

Theorem 5 (Szemerédi regularity lemma, 1974). Given $\epsilon > 0$ and $m \ge 1$, there exists a constant $M = M(\epsilon, m)$ such that every graph on at least m vertices has an equipartition into r parts such that all but at most ϵr^2 pairs of classes are ϵ -regular and $m \le r < M$.

Proof. **15:** Finish the proof and give a upper bound on M not depending on n. Hint: Make sure you can apply Lemma 4 and keep applying it. How many application you need and how will this influence the number of parts?

Solution: Begin with an equipartition of G into $k \ge \max\{m, 4\epsilon^{-6}\}$ classes. If it is ϵ -regular we are done. Otherwise, the lemma above allows us to refine the partition into $k^2 2^{k-1}$ classes and increase the mean square density by at least $\epsilon^5/2$. We continue this process until we reach an ϵ -regular partition. Because the mean square density cannot exceed 1, this process must stop after at most $2\epsilon^{-5}$ steps. That is, we have an equipartition into r classes where all but at most ϵr^2 pairs of classes are ϵ -regular. Furthermore, for each application of the lemma the number of classes increases from k to at most $k^2 2^{k-1} \le 2^{2k} = 4^k$ parts, so when the process stops we have m < r < M where M is at most a tower of 4s of height at most $2\epsilon^{-5}$.